Contact us
Over 50,000 Products
Fast & Flexible Delivery
Technical Support
Free Product Plus Sourcing

Non-Latching Relays

Relays are electrical switches that are operated by electrical impulses with the primary function to open and close a circuit, they can also be referred to as industrial switches. There are 2 main types available, latching and non–latching relays. How do non-latching relays work? Non-latching relays are in a normally closed (NC) position and will stay in this state without power. When power passes through the circuit, the relay switched to a normally open (NO) position by using an internal coil to generate a magnetic force, holding this NO position. Once the current is turned off, it returns to the NC position. This makes non-latching relays well suited to push-button applications like keyboards and micro-controller input buttons. What are non-latching relays used for? Non-latching relays are highly durable and versatile components, making their performance long lasting and suitable for use in a wide range of applications, such as: Automotive engines. Household appliances. Industrial machinery. Medical equipment. Telecommunications equipment. What is the difference between latching and non-latching relays? Both types of relays in similar in design and function, however, a significant difference between them is that a latching relay will remain in the last position it when it was last powered, whereas a non-latching goes back to its normal position. This makes each more type of relay suitable for different applications. Considerations when selecting a relay. When choosing a relay, it is important to consider a number of specifications to ensure it is fit for purpose, some factors include: Coil voltage – the required voltage to actuate the switching mechanism. If a voltage is too high this could damage the components, if it is too low then it will not actuate.Contact configuration – This is the state the contacts are in without power. For example SPST, single pole single throw. Contact material – the relay contacts are available in many materials that have certain properties. Common materials are gold, silver, tin oxide and nickel. Coil power – the amount of power (watts) the coil operates at. This must match the power in the circuit for correct function. Coil resistance – the amount of resistance (ohms) in the circuit that the coil creates.